
ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 1956

Boosting Bidirectional A* Efficiencies:

State-nonexistence Fast-confirming Hashing

Schemes and Partial Problem-based Informed

Heuristic Generations
Kee-cheol Lee

Computer Engineering Department, Hongik University, Seoul, Korea 121-791

Abstract: It is well-known that most games and real world problems are technically classified as NP-hard, and we often

resort to human-like heuristics to get their sub-optimal solutions. In case we really want to find an optimal path to a fixed

goal of a problem instance in an enormous search space, the conventional A
*
 algorithm framework may be useful. The

success of A
*
 algorithms depends on how to generate a maximally informed admissible version of h-val, the estimated

distance to the goal state, such that it is not larger than but still as close as the unknown real distance to the goal. Recently

we have suggested a method of generating a heuristic value with that property. To operate A
*
 algorithms in binary search

fashions, some depth of fixed step backward states are pre-stored in disk, and the hashing schemes to handle efficiently pre-

stored states must be designed to confirm fast the non-existence of a given state, not its existence, because the optimal path

is there as soon as the existence of a state is confirmed. In this paper, state-nonexistence fast-confirming hashing schemes

have been experimentally compared. The same pre-stored static backward states are also used for solving partial problems

for the purpose of generating maximally informed admissible heuristic which guides the priority queue for A* algorithm in

deciding which state to expand next. To show the validity of our method, it has been massively experimented for instances

of Rubik‟s cube problem whose search space of states reachable from any given start state is known to cover 43*10
18

 states.

The partial problems are experimentally compared, by varying forward search depths and tie-breaking functions, to show

their effectiveness and efficiency in generating heuristic values.

Keywords: bidirectional A
*
, state-nonexistence fast-confirming hashing, partial problem-based heuristic, dynamic forward

search, static backward search

I. FINDING AN OPTIMAL PATH TO A FIXED GOAL OF A

COMPLEX PROBLEM
1

Most games and problems we face may be technically

classified as NP-hard, which practically means that an

optimal path to a goal state of a given problem becomes

almost impossible to obtain as the size of a given problem

instance becomes bigger, despite recent rapid hardware

technology advances. Therefore, we normally seek their sub-

optimal heuristic-based solutions. However, if we still need

their optimal paths, the framework of A
*
algorithm [1] [2]

may be tried which theoretically produce optimal paths

given sufficient time. The bidirectional A
*
 algorithm in [3] is

shown in Fig. 1 to be used as the starting point of our

discussion. This version is assumed to utilize for its

backward search the pre-stored static state space including a

fixed goal state.

unsignedintState::f() { return g_val+ h_val; }

boolBidirectional_A* {

1
This work is supported in part by Hongik University

Research Fund 2013.

priority_queue<State> OPEN;

set<State> CLOSED; // CLOSED is a set of states

START.g_val = 0; START.h_val = heuristic(START);

OPEN.push(START); // push START into OPEN

while (OPEN is not empty) {

State P = OPEN.top();OPEN.pop();// state with min f

if (P is in the pre-stored static backward search space) {

// GOAL check included here

print the path from START through P to GOAL;

return true; }

for (each child C of P) {

C.g_val = P.g_val + 1; C.h_val = heuristic(C);

if (C already exists as oldC in OPEN) {

if (C.f()>oldC.f())

{ OPEN.delete(oldC); OPEN.push(C);}

 } else if (C already exists as oldC inCLOSED)

{ CLOSED.delete(oldC); OPEN.push(C); }

elseOPEN.push(C);

} // end of for each child …

CLOSED.add(P);

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 1957

} // end of while (true)

return false; // no solution exists

} // end of bidirectional_A*

Fig.1General framework of bidirectional-A* algorithm

OPEN holding statesready to expand is a priority queue

which returns the state with minimum f_val,which is the

summation of g_val and h_val. g_val is the number of the

steps from the initial state(START) to the current state,

andh_val is the number of underestimatedsteps from it to the

final state(i.e., GOAL).What matters most is how to

generatean admissible (or nearly admissible) heuristic for

calculating h_val such that its value is as large as possible

but still not larger than real remaining steps.Korf tried a

static pattern database [4], but we suggested a more

complicated partial problem-based method, the outline of

which has been described in [3]. This paper may be

considered as its companion paper in which efficiency issues

are experimentally treated regarding hashing methods and

partial problem generation schemes.

II. SAMPLE PROBLEM SPACE FOR EXPERIMENTS

Our method of obtaining an optimal path to a given

random start instance is general enough to be applied to any

complex problem with a fixed goal state. However, just to

clarify itsprocedure, we decided to utilize a well-known

game problem, Rubik‟s cube, widely considered to be the

world‟s best-selling toy[5]. It was estimated that 350 million

cubes had been sold worldwide as of Jan. 2009 [6][7].

Humans can solve it in well under 100 moves with some

methods [8][9], which are far from optimal and out of our

concerns.

A. God’s Number

A lower bound of 18 had been established by analyzing

the number of effectively distinct move sequences of 17 or

fewer moves, and finding that there were fewer such

sequences than cube positions.In 1995 Michael Reid raised it

to 20. The first upper bound was probably around 80 or so

from the algorithm in one of the early solution booklets. In

1982, David Singmaster and Alexander Frey hypothesized

that the number of moves needed to solve the Rubik‟s cube,

given an ideal algorithm, might be in “the low

twenties”[10].Computer search methods were used to

demonstrate that any Rubik‟s cube can be solved in 26

moves[11], and in 22 moves[12], and in July 2010,

researchers including Rokicki, with about 35 CPU-years of

idle computer time donated by Google, proved the so-called

“God‟s number” to be 20[13]. More generally, it has been

shown that an n * n * n Rubik‟s cube can be solved

optimally in the order of n
2
 / log(n) moves[14].

Table I summarizes a history of God‟s number until it was

shown to be 20[15].

TABLE I

GOD‟S NUMBER IS 20[15]

Year
Lower

bound

Upper

bound
Notes and Links

18

around

80

mathematical analysis, early

solution booklet

1981 - 52 by Thistlethwaite

1982

might be

low 20‟s
by Frey and Singmaster[10]

1990 - 42 by Kloosterman

1992 - 39 by Reid

1992 - 37 by Winter

1995 20 29 by Reid

2006 - 27 by Radu

2007 - 26 by Kunkle and Cooperman [11]

2008 - 22 by Rokicki and Welborn[12]

2010 - 20 byRokicki, and et. al. [13]

In this paper, we tested the effectiveness of our suggested

method in solving an optimal or near optimal solution of a

given Rubik‟s cube of some difficulty in 20 or less steps.

B. The Problem Space and Its Backward Static Search

Space

Every state of the Rubik‟s cube can be defined by 48 tiles

as in Fig. 2, excluding center tiles fixed during any

move[16], though it has 6 faces each of which has 9 tiles.

The goal state is the one with each face holding tiles of one

color.The 48 tiles can be thought to be divided into 8 corners

of 3 tiles and 12 edges of 2 tiles. Corners(Edges) move only

to corner(edge) positions. A corner(edge) in a given position

can be oriented in any of three(two) ways.The total number

of states reachable from a given random state can be

analytically calculated to be 43,252,003,274,489,856,000[4].

Fig. 2Face and tile number notations

If we pre-store d_back-step backward states, the forward

search can be limited to the depth of 20-d_back, considering

the total depth is limited to 20. Considering the state size of

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 1958

40 bytes, Table II[15] shows that the pre-stored disk space is

0.3 Gigabytes for depth 6, 4.4 Gigabytes for depth 7, and

57.7 Gigabytes for depth 8. In our experiments, d_back was

set to 7.

TABLE II

STATIC BACKWARD SEARCH SPACE AND DYNAMIC FORWARD SEARCH

SPACE[15]

pre-stored backward

search Forward

depth

states in forward

search space
depth states

0 1 20 43,252,003,274,489,856,000

1 19 19 ~43e18

2 262 18 ~42e18

3 3,502 17 ~13e18

4 46,741 16 ~1.2e18

5 621,649 15 98,929,809,184,629,089

6 8,240,087 14 7,564,662,997,504,768

7 109,043,123 13 575,342,418,679,410

8 1,441,386,411 12 43,689,000,394,782

9 19,037,866,206 11 3,314,574,738,534

10 251,285,929,522 10 251,285,929,522

III. STATE-NONEXISTENCE FAST-CONFIRMING HASHING

FOR PRESTORED STATIC SEARCH SPACE

The pre-stored static backward search space is so big that

it is logical to store all the entries in hard disk space. It must

be noted that as soon as we confirm that the matching state

is in the pre-stored space, we have only to follow the path

from it to GOAL, and we are done. Therefore what matters

is not how fast we find a given state, but how fast we

confirm that a given state does not exist.The experiments

have been conducted on a specific domain here, but the same

procedure can be applied more generally.

TABLE III
COLLISIONS FOR ADIFFERENT NUMBER OF BUCKETS

524,288

bucket HT
100M

bucket HT
500M

bucket HT

bucket

size
buckets

bucket

size
buckets

bucket
size

buckets

0 285,080

0 33,613,590

0 402035741

2 6

1 36,640,358

1 87663071

3 5

2 19,976,849

2 9565144

4 72

3 7,261,843

3 696162

5 16

4 1,982,473

4 38187

.... ...

5 431,992

5 1641

410 256

6 78,773

6 53

411 259

7 12,218

7 1

412 268

8 1,644

8 0

413 266

9 233

9 0

... ...

10 25

10 0

5520 1

11 1

11 0

5560 1

12 1

12 0

total 524,288

total 100e6

total 500e6

empty

rate
54.4%

empty

rate
33.6%

empty

rate
80.4%

Non-

empty

bucket

size

455.85

±
412.11

Non-

empty

bucket

size

1.64

±
0.86

Non-

empty

bucket

size

1.11

±
0.34

A. Real World Collision Results for Different Numbers of

Buckets

For experimental purpose we stored 1.09*10
8
 states of 7-

step space of Rubik‟s cube using hash tables by using

problem-dependent realworld hashing functions, varying the

number of buckets, and the experimental results are

summarized in Table III.

For 0.5mega buckets, more than a half of buckets get

empty, and no bucket turns out to contain a single state. For

100mega buckets, more than 70% of buckets are empty or

contain just one entry position. If we utilize 500mega

buckets, 80.4% of buckets get empty, and 17.5% of buckets

contain just one entry position.

B. Hash Table Structures

For a hash table to be used for pre-stored backward

searches it must be designed to confirm fast the nonexistence

of a given state, which is quite different from the normal

hashing designed to confirm fast where a given state is.

Basically two step hashing is used, i.e., an array of hash1

and an array of hash2, to be stored in disk. All the indexes to

the pre-stored states are separately stored as an unsigned

array (i.e. an array of hash2). Hash1 is responsible for a

bucket of states with the same hash function, and contains

within it the bucket size (the number of state indexes) and

the start position in the hash2 array, which is 1
st
 method. In

method 2, for the bucket size equal to 1, the index itself is

stored for the start position. In method 3, 1
st
 index is stored

in hash1 itself, and the rest indices are in hash2 array, except

for the case of the bucket size 2, where 2
nd

 index is stored for

the start position.In method 4, 1
st
 and 2

nd
 indices are stored

in hash1 and the rest are in hash2 array, except for the case

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 1959

of the bucket size 3, where 3
rd

 index is stored for the start

position.Method 3 and 4 require bigger „struct‟ sizes for

hash1 but reduces the number of indices to be stored in

hash2 array.

#typedef unsigned hash2

// hash2contains prestored backward state index

// array of hash2 is normally stored in disk.

//NBUCKETS is 524288 or 100M or 500M

<method 1>

structhash1 {

unsignedbucketsize;

unsignedstart; // pos of 1st hash2 entry for bucketsize>= 1
} hashtable[NBUCKETS];//normally in disk, not in memory

<method2>

structhash1 {

unsignedbucketsize;

union {

unsignedstart; // 1st hash2 entry posfor bucketsize>= 2

unsignedind;// 1st index for bucketsize == 1

}

} hashtable[NBUCKETS];

<method 3>

structhash1 {

unsignedbucketsize;

unsignedind; // 1st index for bucketsize>= 1

union {

unsignedstart; //2nd hash2 entry posfor bucketsize>= 3

unsignedind2; // 2nd index for bucketsize == 2 only

}

} hashtable[NBUCKETS];

<method 4>

structhash1 {

unsignedbucketsize;

unsignedind; // 1st index for bucketsize>= 1

unsignedind2; // 2nd index for bucket size >= 2

union {

unsignedstart; // 3rd hash2 entry posfor bucketsize>=4

unsignedind3; // 3rd index for bucketsize == 3 only

}

} hashtable[NBUCKETS];

C. Analysis of Experimental Results

All the data in this section is based on the experimental

collision statistics in Table III. It must be kept in mind that

around 4 giga bytes are already used for storing around 100

mega states of 7-step backward space.

1) Memory Efficiencies:Table IV summarizes how much

more bytes are necessary to access the data based on

hashing. Considering the size of our pre-stored data

(4,361,724,920 bytes), 0.5 mega bucket table needs

extra 0.440-0.444giga bytes(10.1~10.2%), 100 mega

bucket table needs extra 1.090~1.633giga

bytes(25.0~37.4%), and 500 mega bucket table needs

extra 4.086-8.000giga bytes(93.7~183.4%).The

memory overhead for hashing looks reasonable for 0.5

mega buckets or 100 mega buckets, but it gets very

burdensome if we use 500 mega buckets. Table V

shows the real sizes of buckets, i.e. hash2 bucket sizes.

2) Speed Efficiencies:Table VI summarizes the average

random accesses necessary to confirm the non-

existence of a given state. To confirm that a given state

is not stored, 2.12~2.75 accesses are needed for 100

mega bucket table, and 1.22~1.41 accesses are needed

for 500 mega bucket table. For the latter, however,

using more disk space does not much improve the

average random accesses, and the method 3 with 1.22

accesses (or even method 2 with 1.24 accesses) looks a

good choice. In case of 100 mega bucket table, the

method 3 with 2.19 accesses looks reasonable. Table

VII shows how long it will take to confirm the non-

existence of one million given states, which is often

the case with a complex problem like Rubik‟s cube.

Table VIII summarizes the memory and speed of the

100 mega and 500 mega cases (method 3). Compared

with 100 mega bucket table, 500 mega bucket table

requires 4.72 giga byte space more, but can finish in

55.7% time.

TABLE IV

ADDITIONAL DISK SPACE IN BYTES FOR HASHING

Buckets 524,288 100e6 500e6

method 1 440,366,796 1,236,172,492 4,436,172,492

method 2 440,366,796 1,089,611,060 4,085,520,208

method 3 441,507,092 1,290,719,456 6,006,054,880

method 4 443,604,204 1,632,624,712 8,000,485,584

[Note] the above summarizes the additional storage for

hashing pre-stored 4,361,724,920 byte data.

TABLE V

REAL SIZES OF HASH2 BUCKETS

Buckets 524,288 100e6 500e6

empty rate 0.5443 0.3361 0.8041

rate of buckets whose size is 1 0 0.3664 0.1753

rate of buckets whose size is 2 1.14e-5 0.1998 0.1913

rate of buckets whose size is 3 0.95e-5 0.0726 0.0139

(method 1) real size of

buckets whose size is >= 1
455.85±

412.11
1.64±

0.86
1.11±

0.34

(method 2) real size of

buckets whose size is >= 2
455.85±

412.11
2.43±

0.71
2.08±

0.28

(method 3) real size of

buckets whose size is >= 3
454.86±

412.11
2.32±

0.61
2.06±

0.24

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 1960

(method 4) real size of

buckets whose size is >= 4
453.87±

412.11
2.25±

0.54
2.04±

0.21

TABLE VI

RANDOM ACCESSES TO CONFIRM THE NON-EXISTENCE OF ASTATE

Buckets 524,288 100e6 500e6

method 1 209.44±359.54 2.75±1.43 1.41±0.85

method 2 209.44±359.54 2.39±1.45 1.24±0.56

method 3 208.98±359.22 2.19±1.27 1.22±0.48

method 4 208.53±358.91 2.12±1.13 1.22±0.47

TABLE VII

ANALYTIC TIME(HR) TO PROCESS 1 MILLION RANDOM STATES(10MS DISK

ACCESS)

Buckets 524,288 100e6 500e6

method 1 581.78 7.65 3.93

method 2 581.78 6.63 3.44

method 3 580.51 6.08 3.39

method 4 579.24 5.88 3.38

TABLE VIII

MEMORY AND TIME SUMMARY FOR METHOD 3

buckets
7-step pre-

stored space

extra space

for method 3

hashing

accesses to

confirm state-

nonexistence

100e6
4.36 giga

bytes

1.29 giga

bytes
2.19±1.27

500e6
4.36 giga

bytes

6.01 giga

bytes
1.22±0.48

IV. GENERATING PROPERLY INFORMED ADMISSIBLE

HEURISTIC BASED ON PARTIAL PROBLEMS

We assume the problem has a fixed GOAL state and the

static backward search space of states of some depth has

been pre-computed, which is a one-time job. This may be

classified as a method which generates and combines some

partial solutions[3].

A. Outline of a Partial Problem-based Method

1) Preliminary procedure: First of all, the space BSS of

states reachable (in the breadth first way) from

GOAL must be built to be used for the backward

search. The depth of the space, d_back, may be

decided by considering the disk space reserved for

storing static backward states.For example, we set

d_back to 7 for Rubik‟s cube.This procedure may be

summarized into following steps. (1) Generate the

partial problems of the given problem instance, such

that they are small enough to generate their optimal

solutions fast, but big enough to generate large h_val

usable for solving the original problem. Solve them

in the framework of A
*
 for sufficient (say 30 or 50)

random problems.(2) Select some partial problems

whose max h_valis large enough. Let‟s call the static

backward search space fori-th selected partial

problem BSS_PARTIAL(i). The new heuristic is

defined to be the maximum h_val of all selected

partial problems.(3) Decide the proper forward depth,

d_for, by considering the max h_val found for the

partial problems subtracted by the pre-stored depth of

static backward search space.

2) Procedure for a Given Instance: For each new

problem instance, we have to construct

FSS_PARTIAL(i), forward part of SS_PARTIAL(i).

Note that we already have its backward part

BSS_PARTIAL(i). Therefore the dynamically

generated forward part should be much smaller than

its backward counterpart, resulting in a limited d_for

value. Consult [3] for the issues concerned with their

generations. Given a problem instance, we construct

some FSS_PARTIAL(i)‟s, and we are ready to start

the A
*
 algorithm.For each intermediate state we meet

while running A
*
algorithm, its h_val is set to the

largest of all partial problem h_vals.

TABLE IX

SUMMARY OF PARTIAL CUBE SOLUTIONS FOR 25 SAMPLES WHOSE

EFFECTIVE MOVES ARE 23.5± 3.0

path

len.
forward

states
backward

states
total

states
time
(sec)

corner

cubes
9.0±

0.9

47,149±9,7

13

14,242±14,

220

61,391±20,

762

0.4±

0.1

edge

cubes

12.0

±0.9
603,075±24

9,028

260,923±22

1,965

814,716±42

5,869

5.2±

3.0

0-1
11.4

±1.1
297,720±20

4,996

63,098±57,

056

360,818±24

4,362

1.3±

0.8

0-1

+2/0

11.4

±1.1
304,841±19

9,852

64,845±55,

845

369,686±23

7,394

1.3±

0.9

0-1

+2/4

12.0

±1.4
506,661±22

9,703

202,372±18

0,062

709,033±37

5,408

2.5±

1.5

0-1

+2/7

12.0

±1.2
493,412±29

2,345

167,649±16

5,502

661,061±43

0,146

2.4±

1.8

0-1

+2/67

12.4

±1.2
1,168,857±

997,672

472,184±20

3,580

1,641,041±

1,119,939

7.7±

7.3

0-1

+2/46

12.6

±1.4
882,550±60

1,737

439,386±23

7,652

1,321,937±

786,312

5.6±

4.0

0-1

+2/25

12.5

±0.9
547,993±24

9,162

266,310±22

0,572

814,304±43

3,557

3.0±

1.7

0-1

+2/13

12.3

±1.1
638,348±26

6,783

285,913±21

8,146

924,261±46

2,248

3.5±

2.0

0-1
+2/257

12.6

±1.2
1,404,869±

1,307,434

477,427±21

4,144

1,882,295±

1,428,153

9.8±

11.3

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 1961

0-1
+2/467

13.4

±1.1
3,284,856±

2,770,177

625,519±27

2,393

3,910,375±

2,981,393

30.4±

33.6

0-1 +
2/0467

13.4

±1.1
3,284,856±

2,770,177

625,519±27

2,393

3,910,375±

2,981,393

31.1±

34.7

0-1-2
14.8

±1.3

12,418,911

±5,838,039
8,640,670±

4,952,853

21,059,581

±10,539,320
898.±

903.1

B. Selection of Partial Problems

Table IX summarizes partial problem efficiencies in terms

of their path lengths, the number of states generated, and the

total time. For these intermediate experiments, we utilized

some heuristic the maximum value of which is 8. For

instance of the partial cube notation, 0-1+2/67 denotes the

faces 0 and 1 and two tiles (numbered 6 and 7) of the face 2

are used as a partial problem. 0-1+2/46 produces a very good

result among two faces and two tiles partial problems,

because tiles 4 and 6 of face 2 are the ones farther away

from the faces 0 and 1. The more tiles we consider, the

better path lengths(which is the partial problem h-val) we

obtain at the cost of speed. We could utilize some 2 face plus

2 tile partial problems, but we decided to use 2 face ones,

which would require more partial ones. Please note that

these experiments are done for 25 random sample data

whose effective moves are 23.5.

Table X summarizes the results obtained by combining

partial problems of two faces. We used 50 random sample

data with 50 effective moves. It should be noted that the data

used for Table X are fully random and different from the

ones for Table IX and the result comparisons must be done

within the entries in the same table. The last case of 3 pairs

is a good choice, which happens to use 3 partial problems of

faces (a) 0 and 1, (b) 2 and 3, and (c) 3 and 5, implying that

using 5 faces with one face overlapped is better than 6 faces

non-overlapped.

TABLE X

H_VALCALCULATED FOR PARTIAL PROBLEMS OF 50 RANDOM PROBLEM

INSTANCES

h max avg.

a. 0-1 13 10.80

b. 2-3 12 10.98

c. 4-5 12 10.74

d. 1-2 13 10.84

e. 3-5 12 10.84

2-

pairs

ab 13 11.44

ac 13 11.22

ad 13 11.14

ae 13 11.38

3-

pairs

abc 13 11.56

abd 13 11.54

abe 13 11.64

4-

pairs

abcd 13 11.60

abce 13 11.68

C. Experimental Results

For the experimental purpose, a set of Rubik‟s cube

problem instances was generated and consistently used

whose optimal path lengths are 10 to 14 steps. The number

of states stored before solving the problem instance was

counted.

Table XI summarizes the experimental results, the part of

which was reported before [3], but we tried different tie-

breaking rules. Basically for breaking ties, first additional

heuristics (called heu6 and heu8 here) were tried and then

last-come-first-out methods and first-come-first-out methods

were applied. Generally speaking, stack-type tie-breaking

rules worked better especially for harder problems. We

won‟t delve into the additional heuristics here. Other

experiments are all based on our suggested method with

different max depths(d_for) of dynamic forward search

space, set to 5-7. The currently used static space

depth(i.e.d_back) 7 requires just 4 giga byte disk space, but

it may be raised up to 10 to require 10 tera byte disk,

acceptable in modern computers.The value of the dynamic

search space depth, d_for, can be effectively raised as long

as the memory capacity allows.

TABLE XI

EXPERIMENTAL RESULTS WITH 7-STEP PRE-STORED BACKWARD STATES

(a) forw. heuristic=heu6

#steps 10 11 12 13 14

forward

states

stored

957 33,987 628,964 9,558,799
>

50e6

(b) forw. heuristic=myh(d_for=5)

#steps 10 11 12 13 14

states stored for

each two-face

partial prob.

(46741+α)

363 296 174 137 142

forward

states

stored
:queue

-type tie

breaker

5-bfs

inside
63 237 837 1,321,397

>

50e6

5-bfs
/heu6
inside

63 237 837 7,032,237

>

50e6

5-bfs
/heu8
inside

63 225 837 4,570,108

>

50e6

forward

states

stored
:stack

-type tie

breaker

5-bfs

inside
63 228 894 1,450,964

>

50e6

5-bfs
/heu6
inside

63 228 894 3,162,174 >

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 1962

50e6

5-bfs
/heu8
inside

63 228 894 3,186,957

>

50e6

(c) forw. heuristic=myh(d_for=6)

#steps 10 11 12 13 14

states stored for

each two-face

partial prob.

(621649+α)

3980 3361 2113 1839 1904

forward

states

stored
:queue

-type tie

breaker

6-bfs

inside
120 504 1011 8896 46,545,179

6-bfs
/heu6
inside

120 504 1011 8896 > 50M

6-bfs
/heu8
inside

120 492 1011 8896 > 50M

forward

states

stored
:stack

-type tie

breaker

6-bfs

inside
93 420 1665 10186 11,615,151

6-bfs
/heu6
inside

93 420 1665 10186 47,422,873

6-bfs
/heu8
inside

93 477 1665 10186 4,025,489

(d) forw. heuristic=myh(d_for=7)

#steps 10 11 12 13 14

states stored for

each two-face

partial prob.

(8,240,087+α)

42718 38375 26516 23549 25143

forward

states

stored
:queue

-type tie

breaker

7-bfs

inside
510 10338 12747 96696 198515

7-bfs
/heu6
inside

510 10338 12747 96689 198245

7-bfs
/heu8
inside

510 8406 12720 97832 198383

forward

states

stored
:stack

-type tie

breaker

7-bfs

inside
657 10938 5064 174898 89261

7-bfs
/heu6
inside

657 10950 5064 174353 89261

7-bfs
/heu8
inside

657 10968 5064 175002 127414

V. CONCLUSION

Many problems may be stated in the framework of binary

search A
*
 algorithm with the pre-stored backward search

space.First of all, the design of hashing schemes,which fast

confirms the non-existence of a state, not its existence, is

necessary to effectively utilize the pre-stored space. In

addition, to practically utilize A
*
whichguarantees the final

path optimality we have to devise informed admissible

heuristic for a given specific problem. Accordingly, how to

generatepartial problems which may suggest that kind of

heuristicmay be the key to the success of A
*
 given a problem

instance.

Our bidirectional search paradigm was massively tested

for the practical domain of Rubik‟s cube. The hashing

schemes for fast confirming the non-existence of a state in

the pre-stored backward space were experimentally

compared. The generation of partial problems was also

tested by varying the dynamic search depth for different tie-

breaking methods.

Though a specific domain was used for experiments, the

same procedure can to applied to a broader spectrum of

complex problems with a fixed goal in finding their optimal

(or almost optimal) paths efficiently.

ACKNOWLEDGMENT

This work is supported in part by Hongik University

Research Fund 2013.

REFERENCES

[1] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the
Heuristic Determination of Minimum Cost Paths,” IEEE Trans. on

Science and Cybernetics (2), pp.100-107, 1968.

[2] G. Luger, “Heuristic Search,” Ch. 4, Artificial Intelligence, 6ed.,

Pearson, 2008.

[3] K. Lee and H. Kim, “Analyzing and Combining Partial Problem

Solutions for Properly Informed Heuristic Generations,” IISTE
Computer Engineering and Intelligent Systems 3(11), pp1-8, 2012.

[4] R.Korf, “Finding Optimal Solutions to Rubik‟s Cube Using Pattern

Databases,” AAAI/IAAI, pp.700-705, 1997.
[5] “Rubik‟s Cube 25 years on: crazy toys, crazy times,” The

Independent(London), Aug. 16, 2007.

[6] W. L. Adams, “The Rubik’s Cube: A Puzzling Success,” TIME, Jan,

2009.
[7] A. Jamieson, “Rubik‟s Cube inventor is back with Rubik‟s 360,” The

Daily Telegraph (London), Jan. 2009.

[8] P. Marshall, “The Ultimate solution to Rubik‟s cube,”
http://helm.lu/cube/MarshallPhilipp/, 2005.

[9] D.Singmaster, “Notes on Rubik‟s Magic Cube,” Harmondsworth,

Eng: Penguin Books, 1981.
[10] A. Frey and D.Singmaster, Handbook of Cubik Math, Enslow

Publishers, 1982.

[11] D. Kunkle and C. Cooperman, “Twenty-Six Moves Suffice for
Rubik‟s Cube,” Proc. of the International Symposium on Symbolic

and Algebraic Computation(ISSAC '07), ACM Press, 2007.

[12] T.Rokicki, “Twenty-Two Moves Suffice,”
http://cubezzz.dyndns.org/drupal/?q=node/view/121, Drupol, Aug.12

2008.

[13] J. F. Flatley, “Rubik‟s cube solved in twenty moves, 35 years of CPU
time,” Engadget, Aug. 9, 2010.

[14] E.Dermaine, M. L. Dermaine, S.Eisenstat, A.Lubiw, and A. Winslow,

“Algorithms for Solving Rubik‟s Cubes,” arTiv:1106.5736v, 2011.
[15] God‟s Number is 20, http://www.cube20.org/, 2012.

[16] M. W. Dempsey, “Growing up with science: The illustrated

encyclopedia of invention,” London: Marshall Cavendish, pp.1245,
1988.

ISSN (Print) : 2319-5940
ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 5, May 2013

Copyright to IJARCCE www.ijarcce.com 1963

BIOGRAPHY

Kee-cheol Lee He was born in Seoul,

Korea in 1955. He received a BS degree

in electronic engineering from Seoul

National University in 1977, a MS

degree in computer science from Korea

Advanced Institute of Science in 1979,

and a Ph.D in electrical and computer

engineering from University of

Wisconsin-Madison in 1987. Since 1989, he has been on the

faculty of computer engineering department, Hongik

University, Seoul, Korea, and currently he is a professor.

His academic and research interests cover the fields of

artificial intelligence, machine learning, and information

retrieval.

